沈阳先生 编著
1
历史起源
有关生命起源的假说,包括生源论,生源论在19世纪的西方相当流行。有生源论认为,生命是宇宙生来就固有的。宇宙怎么起源的?物质怎么来的?生命如何从物质中产生?其实这是一个不可知论。
自古以来,人类在日常生活和生产实践中,已经觉察到微生物的生命活动及其所发生的作用。在古希腊留下来的石刻上,记有酿酒的操作过程。
中国利用微生物进行酿酒的历史,可以追溯到4000多年前的龙山文化时期。2600年前发明了制酱技术。殷商时代的甲骨文中刻有“酒”字。北魏贾思勰的《齐民要术》(533~544)中,列有谷物制曲、酿酒、制酱、造醋和腌菜等方法。
中国在春秋战国时期,就已经利用微生物分解有机物质的作用,进行沤粪积肥。公元1世纪的《泛胜之书》提出要以熟粪肥田以及瓜与小豆间作的制度。2世纪的《神农本草经》中,有白殭蚕治病的记载。6世纪的《左传》中,有用麦曲治腹泻病的记载。在10世纪的《医宗金鉴》中,有关于种痘方法的记载。1796年,英国人琴纳发明了牛痘苗,为免疫学的发展奠定了基石。
形态学阶段
列文虎克
17世纪中叶荷兰人列文虎克(Antoni van Leeuwenhoek)用自制的简单显微镜(可放大160~260倍)观察牙垢、雨水、井水和植物浸液后,发现其中有许多运动着的“微小动物”,并用文字和图画科学地记载了人类最早看见的“微小动物”——细菌的不同形态(球状、杆状和螺旋状等)。
微生物
过了不久,意大利植物学家P.A米凯利也用简单的显微镜观察了真菌的形态。
一大批研究者在19世纪下半叶用自制的简单显微镜观察并发现了许多微生物,推动了微生物学研究的蓬勃发展,其中贡献最突出的有巴斯德、科赫、贝耶林克和维诺格拉德斯基。
1838年,德国动物学家C.G.埃伦贝格在《纤毛虫是真正的有机体》一书中,把纤毛虫纲分为22科,其中包括3个细菌的科(他将细菌看作动物),并且创用bacteria(细菌)一词。
1854年,德国植物学家F.J.科思发现杆状细菌的芽孢,他将细菌归属于植物界,确定了此后百年间细菌的分类地位。
微生物学的一套基本技术在19世纪后期均已完善,包括显微术、灭菌方法、加压灭菌器(Chamberland,1884)、纯培养技术、革兰氏染色法(Gram,1884)、培养皿(Petri,1887)和琼脂作凝固剂等。
生理学阶段
微生物学的研究从19世纪60年代开始进入生理学阶段。
法国科学家L.巴斯德对微生物生理学的研究为现代微生物学奠定了基础,化学家出身的巴斯德涉足微生物是为了治疗“酒病”和“蚕病”。他论证酒和醋的酿造以及一些物质的腐败都是由一定种类的微生物引起的发酵过程,并不是发酵或腐败产生微生物,著名的曲颈瓶实验无可辩驳的证实了这一点;他认为发酵是微生物在没有空气的环境中的呼吸作用,而酒的变质则是有害微生物生长的结果;他进一步证明不同微生物种类各有独特的代谢机能,各自需要不同的生活条件并引起不同的作用;他提出了防止酒变质的加热灭菌法,后来被人称为巴斯德灭菌法,使用这一方法可使新生产的葡萄酒和啤酒长期保存。
巴斯德
微生物学家巴斯德原是化学家,曾在化学上做出过重要的贡献,后来转向微生物学研究领域,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:
①彻底否定了“自然发生”学说。“自生说”是一个古老学说,认为一切生物是自然发生的。到了17世纪,虽然由于研究植物和动物的生长发育和生活循环,是“自生说”逐渐消弱,但是由于技术问题,如何证实微生物不是自然发生的仍是一个难题,这不仅是“自生说”的一个顽固阵地,同时也是人们正确认识微生物生命活动的一大屏障。巴斯德在前人工作的基础上,进行了许多试验,其中著名的曲颈瓶试验无可辩驳地证实,空气内确实含有微生物,他们引起有机质的腐败。巴斯德自制了一个具有细长而弯曲的颈的玻瓶,其中盛有有机物水浸液,经加热灭菌后,瓶内可一直保持无菌状态,有机物不发生腐败,一旦将瓶颈打断,瓶内浸液中才有了微生物,有机质发生腐败。巴斯德的试验彻底否定了“自生说”,并从此建立了病原学说,推动了微生物学的发展。
②免疫学——预防接种。Jenner虽然早在1798年发明了种痘法可预防天花,但却不了解这个免疫过程的基本机制,因此,这个发现没能获得继续发展。1877年,巴斯德研究了鸡霍乱,发现将病原菌减毒可诱发免疫性,以预防鸡霍乱病。其后它又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说,为人类防病、治病做出了重大贡献。
③证实发酵是由微生物引起的。究竟发酵是一个由微生物引起的生物过程还是一个纯粹的化学反应过程,曾是化学家和微生物学家激烈争论的问题。巴斯德在否定“自生说”的基础上,认为一切发酵作用都可能与微生物的生长繁殖有关。经不断地努力,巴斯德终于分离到了许多引起发酵的微生物,并证实酒精发酵是由酵母菌引起的。还研究了氧气对酵母菌的发育和酒精发酵的影响。此外,巴斯德还发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的。为进一步研究微生物的生理生化奠定了基础。
④其它贡献。一直沿用至今天的巴斯德消毒法(60~65℃作短时间加热处理,杀死有害微生物的一种消毒法)和家蚕软化病问题的解决也是巴斯德的重要贡献,它不仅在实践上解决了当时法国酒变质和家蚕软化病的实际问题,而且也推动了微生物病原学说的发展,并深刻影响医学的发展。
罗伯特·科赫
罗伯特·科赫(1843-1910),德文名Robert Koch,是德国医生和细菌学家,世界病原细菌学的奠基人和开拓者。
柯赫是著名的细菌学家,由于他曾经是一名医生,因此对病原细菌的研究做出了突出的贡献:
①
具体证实了炭疽病菌是炭疽病的病原菌;
②
发现了肺结核病的病原菌,这是当时死亡率极高的传染性疾病,因此柯赫获得了诺贝尔奖;
③提出了证明某种微生物是否为某种疾病病原体的基
本原则——柯赫原则:首先在患病肌体里存在着一种特定的病原菌,并可以从该肌体里分离得到纯培养;然后用得到的纯培养接种敏感动物,表现出特有的性状;最后从被感染的敏感动物中又一次获得与原病原菌相同的纯培养。
由于柯赫在病原菌研究方面的开创性工作,自19世纪70年代至20世纪20年代成了发现病原菌的黄金时代,所发现的各种病原微生物不下百余种,其中还包括植物病原菌。柯赫除了在病原菌方面的伟大成就外,在微生物基本操作技术方面的贡献更是为微生物学的发展奠定了技术基础,这些技术包括:①用固体培养基分离纯化微生物的技术,这是进行微生物学研究的基本前提,这项技术一直沿用至今;②配制培养基,也是当今微生物研究的基本技术之一。这两项技术不仅是具有微生物研究特色的重要技术,而且也为当今动植物细胞的培养做出了十分重要的贡献。
科赫对新兴的医学微生物学作出了巨大贡献。科赫首先论证炭疽杆菌是炭疽病的病原菌,接着又发现结核病和霍乱的病原细菌,并提倡采用消毒和杀菌方法防止这些疾病的传播;他的学生们也陆续发现白喉、肺炎、破伤风、鼠疫等的病原细菌,导致了当时和以后数十年间人们对细菌给予高度的重视;他首创细菌的染色方法,采用了以琼脂作凝固培养基培养细菌和分离单菌落而获得纯培养的操作过程;他规定了鉴定病原细菌的方法和步骤,提出著名的科赫法则。
1860年,英国外科医生J.利斯特应用药物杀菌,并创立了无菌的外科手术操作方法。1901年,著名细菌学家和动物学家И.И.梅契尼科夫发现白细胞吞噬细菌的作用,对免疫学的发展做出了贡献。
俄国出生的法国微生物学家C.H.维诺格拉茨基于1887年发现硫磺细菌,1890年发现硝化细菌,他论证了土壤中硫化作用和硝化作用的微生物学过程以及这些细菌的化能营养特性。他最先发现嫌气性的自生固氮细菌,并运用无机培养基、选择性培养基以及富集培养等原理和方法,研究土壤细菌各个生理类群的生命活动,揭示土壤微生物参与土壤物质转化的各种作用,为土壤微生物学的发展奠定了基石。
1892年,俄国植物生理学家Д.И.伊万诺夫斯基发现烟草花叶病原体是比细菌还小的、能通过细菌过滤器的、光学显微镜不能窥测的生物,称为过滤性病毒。
1915~1917年,F.W.特沃特和F.H.de埃雷尔观察细菌菌落上出现噬菌斑以及培养液中的溶菌现象,发现了细菌病毒——噬菌体。病毒的发现使人们对生物的概念从细胞形态扩大到了非细胞形态。
在这一阶段中,微生物操作技术和研究方法的创立是微生物学发展的特有标志。
生物化学阶段
20世纪以来,生物化学和生物物理学向微生物学渗透,再加上电子显微镜的发明和同位素示踪原子的应用,推动了微生物学向生物化学阶段的发展。
1897年德国学者E.毕希纳发现酵母菌的无细胞提取液能与酵母一样具有发酵糖液产生乙醇的作用,从而认识了酵母菌酒精发酵的酶促过程,将微生物生命活动与酶化学结合起来。G.诺伊贝格等人对酵母菌生理的研究和对酒精发酵中间产物的分析,A.J.克勒伊沃对微生物代谢的研究以及他所开拓的比较生物化学的研究方向,其他许多人以大肠杆菌为材料所进行的一系列基本生理和代谢途径的研究,都阐明了生物体的代谢规律和控制其代谢的基本原理,并且在控制微生物代谢的基础上扩大利用微生物,发展酶学,推动了生物化学的发展。
从20世纪30年代起,人们利用微生物进行乙醇、丙酮、丁醇、甘油、各种有机酸、氨基酸、蛋白质、油脂等的工业化生产。
1929年,A.弗莱明发现点青霉菌能抑制葡萄球菌的生长,揭示了微生物间的拮抗关系并发现了青霉素。
1949年,S.A瓦克斯曼在他多年研究土壤微生物所积累资料的基础上,发现了链霉素。
此后陆续发现的新抗生素越来越多。这些抗生素除医用外,也应用于防治动植物的病害和食品保藏。
分子生物学
炭疽杆菌
1941年,G.W.比德尔和E.L.塔特姆用X射线和紫外线照射链孢霉,使其产生变异,获得营养缺陷型。他们对营养缺陷型的研究不仅可以进一步了解基因的作用和本质,而且为分子遗传学打下了基础。
1944年,O.T.埃弗里第一次证实了引起肺炎球菌形成荚膜遗传性状转化的物质是脱氧核糖核酸(DNA)。
1953年,J.D.沃森和F.H.C.克里克提出了DNA分子的双螺旋结构模型和核酸半保留复制学说。H.富兰克尔-康拉特等通过烟草花叶病毒重组试验,证明核糖核酸(RNA)是遗传信息的载体,为奠定分子生物学基础起了重要作用。其后,又相继发现转运核糖核酸(tRNA)的作用机制、基因三联密码的论说、病毒的细微结构和感染增殖过程、生物固氮机制等微生物学中的重要理论,展示了微生物学广阔的应用前景。
1957年,A.科恩伯格等成功地进行了DNA的体外组合和操纵。原核微生物基因重组的研究不断获得进展,胰岛素已用基因转移的大肠杆菌发酵生产,干扰素也已开始用细菌生产。
现代微生物学的研究将继续向分子水平深入,向生产的深度和广度发展。
现代发展
微生物20世纪上半叶微生物学事业欣欣向荣,微生物学沿着两个方向发展,即应用微生物学和基础微生物学。
在应用方面,对人类疾病和躯体防御机能的研究,促进了医学微生物学和免疫学的发展。青霉素的发现(Fleming,1929)和瓦克斯曼(Waksman)对土壤中放线菌的研究成果导致了抗生素科学的出现,这是工业微生物学的一个重要领域。
环境微生物学在土壤微生物学研究的基础上发展起来。微生物在农业中的应用使农业微生物学和兽医微生物学等也成为重要的应用学科。应用成果不断涌现,促进了基础研究的深入,于是细菌和其它微生物的分类系统在20世纪中叶出现了,生物化学,微生物遗传和变异的研究导致了微生物遗传学的诞生。
微生物生态学在20世纪60年代也形成了一个独立学科。
20世纪80年代以来,在分子水平上对微生物研究迅速发展,分子微生物学应运而生。在短短的时间内取得了一系列进展,并出现了一些新的概念,较突出的有,生物多样性、进化、三原界学说;细菌染色体结构和全基因组测序;细菌基因表达的整体调控和对环境变化的适应机制;细菌的发育及其分子机理;细菌细胞之间和细菌同动植物之间的信号传递;分子技术在微生物原位研究中的应用。
经历约150年成长起来的微生物学,在21世纪将为统一生物学的重要内容而继续向前发展,分子微生物生态学。
微生物产业在21世纪将呈现全新的局面。微生物短短的300年间,特别是20世纪中叶,已在人类的生活和生产实践中得到广泛的应用,并形成了继动、植物两大生物产业后的第三大产业。这是以微生物的代谢产物和菌体本身为生产对象的生物产业,所用的微生物主要是从自然界筛选或选育的自然菌种。
21世纪,微生物产业除了更广泛的利用和挖掘不同生境(包括极端环境)的自然资源微生物外,基因工程菌将形成一批强大的工业生产菌,生产外源基因表达的产物,特别是药物的生产将出现前所未有的新局面,结合基因组学在药物设计上的新策略将出现以核酸(DNA或RNA)为靶标的新药物(如反义寡核苷酸、肽核酸、DNA疫苗等)的大量生产,人类将完全征服癌症、艾滋病以及其他疾病。
此外,微生物工业将生产各种各样的新产品,例如降解性塑料、DNA芯片、生物能源等,在21世纪将出现一批崭新的微生物工业,为全世界的经济和社会发展做出更大贡献。
中国发展
微生物作为一门科学进行研究,中国起步较晚。中国学者开始从事微生物学研究在20世纪之初,那时一批到西方留学的中国科学家开始较系统的介绍微生物知识,从事微生物学研究。
1910-1921年微生物间伍连德用近代微生物学知识对鼠疫和霍乱病原的探索和防治,在中国最早建立起卫生防疫机构,培养了第一支预防鼠疫的专业队伍,在当时这项工作居于国际先进地位。
20世纪20-30年代,中国学者开始对医学微生物学有了较多的试验研究,其中汤飞凡等在医学细菌学、病毒学和免疫学等方面的某些领域做出过较高水平的成绩,例如沙眼病原体的分离和确认是具有国际领先水平的开创性工作。
现代化的发酵工业、抗生素工业、生物农药和菌肥工作已经形成一定的规模,特别是改革开放以来,中国微生物学无论在应用和基础理论研究方面都取得了重要的成果,例如中国抗生素的总产量已跃居世界首位,中国的两步法生产维生素C的技术居世界先进水平。
中国学者瞄准世界微生物学科发展前沿,进行微生物基因组学的研究,现已完成痘苗病毒天坛株的全基因组测序,2013年又对中国的辛德毕斯毒株(变异株)进行了全基因组测序。
1999年又启动了从中国云南省腾冲地区热海沸泉中分离得到的泉生热袍菌全基因组测序,2013年取得可喜进展。中国微生物学进入了一个全面发展的新时期。
但从总体来说,中国的微生物学发展水平除个别领域或研究课题达到国际先进水平,为国外同行承认外,绝大多数领域与国外先进水平相比,尚有相当大的差距。因此如何发挥中国传统应用微生物技术的优势,紧跟国际发展前沿,赶超世界先进水平,还需作出艰苦的努力。
2
球菌
现代微生物学
巴斯德和柯赫是微生物学的奠基人。奠定了微生物学的基础,同时开辟了医学和工业微生物等分支学科。
巴斯德和柯赫的杰出工作,使微生物学作为一门独立的学科开始形成,并出现以他们为代表而建立的各分支学科,例如细菌学(巴斯德、柯赫等)、消毒外科技术(J. Lister),免疫学(巴斯德、Metchnikoff、Behring、Ehrlich等)、土壤微生物学(Beijernck Winogradsky等)、病毒学(Ivanowsky、Beijerinck等)、植物病理学和真菌学(Bary、Berkeley等)、酿造学(Hensen、Jorgensen等)以及化学治疗法(Ehrlish等)。微生物学的研究内容日趋丰富,使微生物学发展更加迅速。
19世纪末和20世纪初,微生物学被牢固地建立起来。它的主要发展有两个方面:一是研究传染病和免疫学,研究疾病的防治和化学治疗剂的功效;另一方面是和遗传学的结合。
历史上,微生物学的发展曾经历了两个辉煌的黄金时代,也经历了其发展的低谷时期。
近20年来,随着基因组学、结构生物学、生物信息学、PCR技术、高分率荧光显微镜及其它物理化学理论和技术等的应用,使微生物学的研究取得了一系列突破性进展,微生物学己走出其低谷,开始进入它的第三个黄金时代。
世界地位
当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。
该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图标“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。
除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。
生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。从进化的角度,微生物是一切生物的老前辈。
如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。
原核生物
原核微生物(prokaryotic
microbe):指核质和细胞质之间不存在明显核膜,其遗传物质由单一核酸组成的一类微生物。
原核微生物的核很原始,发育不全,只是DNA链高度折迭形成的一个核区,没有核膜,核质裸露,与细胞质没有明显界线,叫拟核或似核。
原核微生物存在单一细胞器核醣体,只有由细胞质膜内陷形成的不规则的泡沫结构体系,如间体和光合作用层片及其他内折。也不进行有丝分裂。原核微生物形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。
原核微生物包括古菌(即古细菌)、真细菌、放线菌、蓝细菌、粘细菌、立克次氏体、支原体、衣原体和螺旋体。
微生物群种类
一般地,在中国大陆地区的教科书中,均将微生物划分为以下7大类:
细菌
细菌
(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物。
(2)分布:温暖,潮湿和富含有机质的地方。
(3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形。
基本结构:细胞膜细胞壁细胞质核质。
(4)繁殖: 主要以二分裂方式进行繁殖的。
(5)菌落:单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基上大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落。
菌落是菌种鉴定重要的依据。不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同。 [6]
放线菌
(1)
定义:
一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物。
(2) 分布:
含水量较低,有机物较丰富的,呈微碱性的土壤中。
(3) 形态构造:
主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) 。
(4) 繁殖:
通过形成无性孢子的形式进行无性繁殖。
(5) 菌落:
在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉。
病毒
噬菌体侵染细菌过程示意图
(1)定义:一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。
(3)大小:一般直径在100nm左右,最大的病毒直径为200nm的牛痘病毒,最小的病毒直径为28nm的脊髓灰质炎病毒。
(4)增殖:病毒的生命活动中一个显著的特点为寄生性。病毒只能寄生在某种特定的活细胞内才能生活。并利用宿主细胞内的环境及原料快速复制增值。在非寄生状态时呈结晶状,不能进行独立的代谢活动。以噬菌体为例:吸附→DNA注入→复制、合成→组装→释放。(吸附-穿入-脱壳-生物合成-装配与释放)。
化学组成
C,H,O,N,P,S以及其他元素。
营养物质
1,水和无机盐
2,碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质。
来源:周围环境中的有机物质,常用的有醣类、油脂、有机酸及有机酸酯和小分子醇。
作用:碳源对微生物生长代谢的作用主要为提供细胞的碳架,提供细胞生命活动所需的能量,提供合成产物的碳架。
3,氮源:凡能为微生物提供所必需氮元素的营养物质。
来源:周围环境中得有机无机含氮物质。
作用:主要用于合成蛋白质,核酸以及含氮的代谢产物。
4,能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能。
5,生长因子:微生物生长不可缺少的微量有机物。
4
微生物现代定义
肉眼难以看清,需要藉助光学显微镜或电子显微镜才能观察到的一切微小生物的总称。
微生物包括细菌、病毒、真菌和少数藻类等。(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等。)病毒是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。根据存在的不同环境分为空间微生物、海洋微生物等,按照细胞结构分类分为原核微生物和真核微生物。
微生物Micro-Organism包括:细菌、病毒、真菌以及一些小型的原生生物、显微藻类等在内的一大类生物群体,它个体微小,与人类关系密切。涵盖了有益跟有害的众多种类,广泛涉及食品、医药、工农业、环保、体育等诸多领域。在教科书中,将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次氏体、支原体、衣原体、螺旋体。有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝、香菇等。还有微生物是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”。
命名
微生物的分类单位:界、门、纲、目、科、属、种
种是最基本的分类单位,每一分类单位之后可有亚门、亚纲、亚目、亚科……
以啤酒酵母为例,它在分类学上的地位是:
界(Kindom):真菌界
门(Phyllum):真菌门
纲(Class):子囊菌纲
目(Order):内孢霉目
科(Family):内孢霉科
属(Genus):酵母属
种(Species):啤酒酵母
种(species):是一个基本分类单位;是一大群表型特征高度相似、亲缘关系极其接近,与同属内其他种有明显差别的菌株的总称。①菌株(strain)表示任何由一个独立分离的单细胞繁殖而成的纯种群体及其一切后代(起源于共同祖先并保持祖先特性的一组纯种后代菌群)。因此,一种微生物的不同来源的纯培养物均可称为该菌种的一个菌株。菌株强调的是遗传型纯的谱系。例如:大肠埃希氏杆菌的两个菌株:EscherichiacoliB和EscherichiacoliK12
菌株的表示法:如果说种是分类学上的基本单位,那末菌株实际上是应用的基本单位,因为同一菌种的不同菌株在产酶上种类或代谢物产量上会有很大的不同和差别!②亚种(subspecies)或变种(variety):为种内的再分类。
当某一个种内的不同菌株存在少数明显而稳定的变异特征或遗传性状,而又不足以区分成新种时,可以将这些菌株细分成两个或更多的小的分类单元——亚种。
变种是亚种的同义词,因“变种”一词易引起词义上的混淆,从1976年后,不在使用变种一词。通常把实验室中所获得的变异型菌株,称之为亚种。
微生物的命名:微生物的名字有俗名和学名两种。如:红色面包霉——粗糙脉孢霉;绿脓杆菌——铜绿假单胞菌。学名—是微生物的科学名称,它是按照有关微生物分类国际委员会拟定的法则命名的。学名由拉丁词、或拉丁化的外来词组成。学名的命名有双名法和三名法两种。①双名法:学名=属名+种名+(首次定名人)+现定名人+定名年份属名:拉丁文的名词或用作名词的形容词,单数,首字母大写,表示微生物的主要特征,由微生物构造,形状或由科学家命名。种名:拉丁文形容词,前缀小写,为微生物次要特征,如微生物色素、形状、来源或科学家姓名等。
分支
微生物学经历了一个多世纪的发展,已分化出大量的分支学科,据不完全统计(1990年),已达181门之多。根据其性质可以简单归纳为下面6类:
⑴按研究微生物的基本生命活动规律为目的来分总学科称普通微生物学(General Microbiology),分科如微生物分类学,微生物生理学,微生物遗传学,微生物生态学和分子微生物学等。
⑵按研究的微生物对象分如细菌学,真菌学(菌物学),病毒学,原核生物学,自养菌生物学和厌氧菌生物学等。
⑶按微生物所处的生态环境分如土壤微生物学,微生态学,海洋微生物学,环境微生物学,水微生物学和宇宙微生物学。
⑷按微生物应用领域来分总学科称应用微生物学(Applied Microbiology),分科如工业微生物学,农业微生物学,医学微生物学,药用微生物学,诊断微生物学,抗生素学,食品微生物学等。
⑸按学科间的交叉、融合分如化学微生物学,分析微生物学,微生物生物工程学,微生物化学分类学,微生物数值分类学,微生物地球化学和微生物信息学等。
⑹按实验方法、技术分如实验微生物学,微生物研究方法等。
种类
微生物的含义:非分类学上名词,来自法语“Microbe”一词。是形体微小、单细胞或个体结构简单的多细胞、甚至无细胞结构的低等生物的通称。
种类:微生物类群十分庞杂,包括:无细胞结构的病毒、类病毒、拟病毒等,属于原核生物的细菌、放线菌、立克次氏体、衣原体等,属于真核生物的酵母菌和霉菌,单细胞藻类、原生动物等。
特点
1.体积小、比表面积大
微生物的大小以μm计,但比表面积(表面积/体积)大,必然有一个巨大的营养吸收,代谢废物排泄和环境信息接受面。这一特点也是微生物与一切大型生物相区别的关键所在。
2.吸收多、转化快
这一特性为高速生长繁殖和产生大量代谢物提供了充分的物质基础。
3.生长旺、繁殖快
极高生长繁殖速度,如E.coli20-30分钟分裂一次,若不停分裂,48小时2.2×10^43菌数增加,营养消耗,代谢积累,限制生长速度。这一特性可在短时间内把大量基质转化为有用产品,缩短科研周期。也有不利一面,如疾病、粮食霉变。
4、适应强、易变异
极其灵活适应性,对极端环境具有惊人的适应力,遗传物质易变异。更重要的是在于微生物的生理代谢类型多、代谢产物种类多。举例:万米深海、85公里高空、地层下128米和427米沉积岩中都发现有微生物存在。
5.分布广、种类多
分布区域广,分布环境广。生理代谢类型多,代谢产物种类多,种数多。更重要的是在于微生物的生理代谢
类型多、代谢产物种类多。任何有其它生物生存的环境中,都能找到微生物,而在其它生物不可能生存的极端环境中也有微生物存在。
⒍ 易于变异,产生突变
微生物个体小,比表面积大等原因,使得微生物容易受环境条件的影响,在紫外线、生物诱变剂以及环境中的某些营养因子的改变,微生物个体自觉和被迫产生基因结构改变,从而产生变异体,据统计自然条件下,微生物个体变异概率为百万分之一。由于微生物容易产生突变体,因此人们利用微生物这一特性,进行微生物诱变,然后筛选具有某种目的特性的微生物菌株,如提高产量、营养缺陷型等。
生物理论
现代生物学的若干基础性的重大发现与理论,是在研究微生物的过程中或以微生物为实验材料与工具取得的。这些理论包括:证明DNA(脱氧核糖核酸)是遗传信息的载体(三大经典实验:肺炎球菌的转化实验、噬菌体实验、植物病毒的重组实验)。DNA的半保留复制方式(双螺旋的每一条子链分别、都是复制模板)。遗传密码子的解读(64个密码子各对应20种氨基酸及终止信号的哪一种)。 基因的转录调节(operon, promoter, operator, repressor, activator的概念与调节方式)。信使RNA的翻译调节(terminator)等等。2013年,很多常用、通用的生物学研究技术依赖于微生物,比如:分子克隆重组蛋白在细菌或酵母中的表达。很多医学技术也依赖于微生物,比如:以病毒为载体的基因治疗。
微生物生长:在适宜条件下,不断吸收营养物质,并按自身的代谢方式进行新陈代谢,如同化作用大于异化作用,其结果是原生质的总量不断的增加,称为微生物的生长。
微生物的繁殖:当细胞增长到一定程度时,就以二分裂的方式形成两个相似的子细胞,子细胞重复上述过程是细胞数目增加,称为微生物的繁殖。
5
生物界的微生物达几万种,大多数对人类有益,只有一少部分能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。
病源微生物
引起人和动物致病的微生物叫病源微生物,有八大类:
1,真菌:引起皮肤病。深部组织上感染。
2,放线菌:皮肤,伤口感染。
4,细菌:皮肤病化脓,上呼吸道感染,泌尿道感染,食物中毒,败血压症,急性传染病等。
地下微生物
地下微生物
1989年,美国几所大学和能源部的一些专家,在南卡罗来纳州进行调查时,发现了一个“全新的生态系统”。他们在550米的地表下发现了3000多种微生物组织,其中有许多属首次发现。
这些微生物,大多数是从地下水里吸收氧气,而另一些则不需要氧气就能生存。这些微生物吸收养料少,新陈代谢缓慢,它们的生存就像一些地表动物冬眠一样。
海洋微生物
定义1:分布在海洋中的个体微小、形态结构简单的单细胞或多细胞生物。所属学科:水产学(一级学科);水产基础科学(二级学科)
定义2:海洋中个体微小,构造简单的低等生物的总称。包括细菌、放线菌、霉菌、酵母、病毒、衣原体、支原体、噬菌体和微型藻及微型原生动物等。所属学科:资源科技(一级学科);海洋资源学(二级学科)
海洋微生物
以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。海洋细菌是海洋生态系统中的重要环节。
嗜盐性
海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。
嗜冷性
大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。那些能在0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。
嗜压性
海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。
低营养性
海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现像说明常规的平板法并不是一种最理想的分离海洋微生物方法。 [15]
多形性
在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现像在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物。
发光性
在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现像对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。
空间微生物
生态学的研究表明,地球是万物生存的摇篮,它包括陆域生态系、水域生态系及环绕地球的大气生态系等自然生态系。能够存活于大气层环境中的微生物构成了自然界中大气微生物生态系。大气层分为对流层、同温层和电离层。由于大气层随着高度的上升,温度很快下降(对流层的温度只有-43——-83摄氏度),不利于生命活动的化学、物理等因子(臭氧、微重力、UV射线等)也增强,因此,这一生态系中微生物只有抗逆休眠体及来源于带有微生物细胞或孢子的尘埃、雾滴、动物呼吸和排泄物等。
微生物一旦进入或者超越自然生态系中的电离层,由于银河射线及地磁俘获辐射形成的强辐射、微重力等空间环境因子的作用就难以存活。尽管如此,一门研究地球以外生命(包括其他星球上的生命)的新兴科学——《外空生物学》(Exobiology)正在形成。这一研究领域里,外空生物学家一方面利用各种航天飞行器(高空气球、轨道卫星、空间站、航天飞机等)探索生物对空间环境因子作用的反应(即生物学效应),为人类征服空间提供理论知识和技术依据,及空间生物学(Space Biology)研究的主要内容:另一方面越来越多的科学家还试图通过从包括火星、月球、木星等其他星球上取回的岩石和尘埃样品的检测,寻找地球外可能存在的生命形式。
6
作用
生活生产
微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。
一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。
微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000倍才能看到。比如中等大小的细菌,1000个迭加在一起只有句号那么大。
微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。
微生物间的相互作用机制也相当奥妙。例如健康人肠道中即有大量细菌存在,称为正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。
随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。
工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。
通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。
经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。
在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。
相互作用
在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。微生物以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组,研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。
为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。
基因因素
农业微生物基因组研究认清致病机制发展控制病害的新对策。据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。
微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。
极端环境微生物基因组研究深入认识生命本质应用潜力极大。有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。
来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的Tag DNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。
7
微生物世界之最
目前世界上已知最大的微生物:1985年Fishelson、Montgomery及Myrberg三人发现一种生长于红海水域中的热带鱼(名叫surgeonfish)的小肠管道中的微生物费氏刺骨鱼菌(Epulopiscium fishelsoni),这是当时世界上所发现最大的微生物。它外形酷似雪茄烟,长约200~500μm,最长可达600μm,体积约为大肠杆菌的100万倍,这种微生物并不需要由显微镜观察便可直接由肉眼察觉到它的存在。目前最大的微生物则是1997年,由Heidi Schulz在纳米比亚海岸海洋沉淀土中所发现的呈球状的细菌,直径约100~750μm。这比之前所提的微生物大上2~4倍。2011年9月我国科学家在海南发现世界最大真菌子实体,该子实体已生长了20年,长度超过10米,宽度接近1米,厚度在5厘米左右,体积为409262–525140立方厘米,重量超过500千克。
目前世界上已知最小的能独立生活的微生物:支原体,过去也译成“霉形体”,它是一类介于细菌和病毒之间的单细胞微生物,是地球上已知的能独立生活的最小微生物,大小约为100纳米。支原体一般都是寄生生物,其中最有名的当属肺炎支原体(M.Pneumonia),它能引起哺乳动物特别是牛的呼吸器官发生严重病变。
病毒:最小的植物病毒,莴苣花叶病毒,粗1.5纳米,长28纳米;最小的动物病毒,口蹄疫病毒,直径只有2.1纳米。
亚病毒:(包括类病毒、拟病毒、朊病毒)是世界上最小的微生物。拟病毒的大小和类病毒相似;朊病毒比已知的最小的常规病毒还小得多(约30~50nm);类病毒是目前已知最小的可传染的致病因子,比普通病毒简单, 1971年首次报导的马铃薯纺锤形块茎病类病毒,它的大小只有莴苣花叶病毒的三十九分之一。
8
研究技术
显微镜构造
显微
工具是人类器官的延伸。要观察肉眼看不到的微生物,没有适当工具是不可能的。前面所说的列文虎克用显微镜揭示微小的生命世界之前80多年,有个叫杨森的荷兰人已经制造出显微镜,而且在列文虎克之前,英国人虎克已经描绘过显微镜下长在皮革上的兰色霉菌的形态,不过,看到细菌、原生动物等活的微生物,并把它们的运动记录下来的第一人是列文虎克。随着工业发展和技术进步,显微镜经过300多年的改进,2013年已经是林林总总,形式多样了。但从功能上说,无非是从器具和观察对像两方面着手提高放大倍数和增加分辨细微结构能力。在器具上,包括选择投射于物体上的波束的性质及为便于观察而不断改善操纵装置;在观察对像上,则是如何突显待观察的部分。波束有光波和电磁波,用光波的叫做光学显微镜,用电磁波的叫电子显微镜。
光波只能对大于其波长的物体造象,可见光的波长大约是0.4—0.8微米,所以光学显微镜不可能观察到小于200纳米(0.2微米)的物体,2013年的光学显微镜放大和分辨效率已经越来越接近其极限,大约可以将对象放大2000倍。电磁波的波长是光波波长的十万分之一,电子显微镜的放大倍数可以达到百万,可以分辨十分之一纳米。这样,不仅可以看到细胞中许多细微结构,还能观察分子的形态。
无菌操作
显微镜技术问世而使人类开始认识了微生物,然而在对微生物的生命活动和功能有所知晓之前,微生物学并没有诞生。促使微生物学迅速诞生的,是无菌操作技术和纯种培养技术。在1861年,伟大的微生物学家巴斯德做了一个有名的实验。对于微生物学发展具有决定性的作用。
巴斯德用一个有长颈的圆底烧瓶装上肉汤,如果就这么放着,几天后肉汤便浑浊发臭了,用显微镜可以观察到里面长了许多细菌。如果把长长的瓶颈用火焰烧成弯曲状,虽然瓶口还是和外界相通,氧气可以自由出入,可是肉汤放置很长时间也不会变浑浊。如果把里面的肉汤从弯曲处往瓶口倾折,让液体接触瓶口,再让液体流回瓶中,几天后,液体又变浑发臭了。巴斯德这个实验充分说明,肉汤之所以变浑发臭,是肉汤里面的细菌繁殖造成的,如果加热杀死了肉汤里面的细菌,又不让外面的细菌进去,肉汤就不会有细菌生长。液体和瓶口接触后,因为空气中的尘埃和细菌沾在瓶口,通过肉汤进入瓶内,所以几天后会变浑发臭。而且,烧瓶尽管有弯长的颈,可是瓶口是和外界相通的,空气可以自由进入,所以可以保证里面有氧气,所以不是没有氧气而使细菌不能生长。
直到20世纪60年代,在伦敦的一个研究所中,还一直保存着19世纪后期为否定自然发生论所用的的一些陈年肉汤,它们在70年后依然清亮如故。巴斯德这个简单但是具有说服力的著名实验,证实了微生物只能从微生物产生而不能自然地从没有生命的物质发生。从此,人们开始认识到无菌操作的重要。灭过菌的物质在适当保护下将保持无菌状态,除非有人去感染它。巴斯德奠定了这个微生物学的基本原理。
纯种培养
自然界中,各种微生物之间并不是离群素居,彼此老死不相往来的。在任何天然环境中,都有多种微生物共同生活。土壤是微生物的大本营,1克普通的菜园土中就有数百种微生物,个体数量可能超过上亿。连人的口腔中也有几十种细菌。由于巴斯德对葡萄酒变质的研究,人们认识到某种微生物和物质的某种化学变化有直接关系,酵母菌可以把葡萄酒里的葡萄糖变成酒精,醋酸细菌可以使葡萄酒变酸。
巴斯德和其他一些学者的工作又证明传染病是由某些微生物感染所致。既然每种微生物有不同的形态和生理特征,它们在自然界的作用和对人类的影响也必然有差异。我们要了解某种微生物对于人类有害还是有益,或者2013年与人类还没有什么特别密切的关系,就必须单独把这种微生物分离出来研究。这就是在无菌技术的基础上微生物学的另一项基本技术——纯种分离技术。
生物化学技术
PCR技术PCR技术采用体外酶促反应合成特异性DNA片段,再通过扩增产物来识别细菌。由于PCR灵敏度高,理论上可以检出一个细菌的拷贝基因,因此在细菌的检测中只需短时间增菌甚至不增菌,即可通过PCR进行筛选,节约了大量时间,但PCR技术也存在一些缺点:食物成分、增菌培养基成分和其他微生物DNA对Taq酶具有抑制作用,可能导致检验结果假阴性;操作过程要求严格,微量的外源性DNA进入PCR后可以引起无限放大产生假阳性结果,扩增过程中有一定的装配误差,会对结果产生影响。由于以上原因,PCR技术对操作者的自身素质要求很高,对于基层单位而言难以做到。短时间内也不会有经济效益和社会效益,因此影响了这项技术在基层的应用。
基因探针技术利用具有同源性序列的核酸单链在适当条件下互补形成稳定的DNA?RNA或DNADNA链的原理,采用高度特异性基因片段制备基因探针来识别细菌。基因探针的优点是减少了基因片段长度多态性所需要分析的条带数。如法国生物一梅里埃公司的GEN?PROBE基因探针检测系统,对于分离到的单个菌落,30 min完成微生物的确证试验,基因探针的缺点是不能鉴定目标菌以外的其他菌。
免疫学技术
免疫学技术通过抗原和抗体的特异性结合反应,再辅以免疫放大技术来鉴别细菌。免疫方法的优点是样品在进行选择性增菌后,不需分离,即可采用免疫技术进行筛选。由于免疫法有较高灵敏度,样品经增菌后可在较短的时间内达到检出度,抗原和抗体的结合反应可在很短时间内完成。此技术对操作者要求也不高,是目前为止基层单位应用时间最长最为广泛的一项快速检测技术。如采用免疫磁珠法可有效地收集、浓缩神奈川现象阳性的副溶血性弧菌,可显著提高环境样品及食品中病原性副溶血性弧菌的检出率。胶体金免疫层析法能快速、灵敏检测金黄色葡萄球菌,应用胶体金免疫层析法检测乙型肝炎表面抗原,可大大提高工作效率。ATP生物发光法是发展较快的一种用于食品生产加工设备洁净度检测的快速检测方法。利用ATP生物发光分析技术和体细胞清除技术,测量细菌ATP和体细胞ATP,细菌ATP的量与细菌数成正比,用ATP生物发光分析技术检测肉类食品细菌污染状况或食品器具的现场卫生学检测,都能够达到快速适时的目标。微型自动荧光酶标分析法(mini VIDAS)是利用酶联荧光免疫分析技术,通过抗原-抗体特异反应,分离出目标菌,由特殊仪器根据荧光的强弱自动判断样品的阳性或阴性。VIDAS法检测冻肉中沙门菌具有很高的灵敏度和特异性,用于进出口冻肉的检测,可大大缩短检验时间,加快通关速度,检测冻肉中李斯特氏菌亦如此。
全自动微生物分析系统(AMS)
AMS是一种由传统生化反应及微生物检测技术与现代计算器技术相结合,运用概率最大近似值模型法进行自动微生物检测的技术,可鉴定由环境、原料及产品中分离的微生物。AMS仅需4~18 h即可报告结果,以常规法鉴定细菌,只能得到是或不是某种菌,要想知到是哪种菌还要做大量、烦琐的生化试验,而AMS则可以直接报告是什么菌。法国生物梅里埃集团公司出品的Vitek?AMS自动微生物检测系统属当今世界上最为先进、自动化程度最高的细菌鉴定仪器之一。Vitek对细菌的鉴定是以每种细菌的微量生化反应为基础,不同种类的Vitek试卡(检测卡)含有多种的生化反应孔,可达30种,可鉴定405种细菌。用AMS明显缩短肠道菌生化鉴定的时间,如鉴定沙门菌属只需4 h,鉴定志贺氏菌属只需6 h,鉴定霍乱弧菌等致病性弧菌亦只需4~13 h 。这套系统对基层单位而言具有极强的应用价值,但他昂贵的价格让人望而生畏。
分离培养
微生物在自然界中呈混杂状态存在,要获得所需菌种,必需从中把它们分离出来。在保存菌种时不慎受到到污染也需予以分纯。微生物分离和纯化的方法很多,但基本原理却是相似的,即将待分离的样品进行一定的稀释,并使微生物的细胞(或孢子)尽量以分散状态存在,然后使其长成一个个纯种单菌落。然而上述工作又离不开接种,即将一种微生物移到另一灭过菌的培养基上的过程。
研究方向
微生物学学科方向:中国是世界上微生物资源最丰富的国家之一。微生物资源研究反映了微生物学基础研究的水平,是国情调查、资源保护、开发和可持续利用的基础,是生物多样性研究和濒危物种保护的基础,也是包括微生物分子生物学和生物技术在内的微生物学各分支学科的基础。这一领域的研究将加速微物生资源调查、收集、系统分类的研究,扩大微生物菌种与标本保藏量,建立中国微生物物种资源库,使之成为亚洲最大的微生物菌种保藏中心和亚洲最大的菌物标本馆。在系统分类研究中普遍引入新的方法、新技术、新设想,开展生物多样性、系统进化、微生物生态研究,为大规模筛选功能物质提供材料,其中,极端微生物和对农作物有害或有益的微生物的研究以逐渐成为当前的热点研究领域。
微生物学专业研究方向主要包括:真菌及地衣学、微生物资源、分类、系统学、多样性、群体遗传与演化、协同代谢分子机理、环境微生物学、工业微生物学、系统生物技术、微生物生理学、微生物生理学、微生物代谢学、微生物生态学、微生物生化工程、分子病毒学、分子免疫学。
没有评论:
发表评论